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Higher Order Mode Coupling Effects in the Feeding
Waveguide of a Planar Slot Array

Sembiam R. Rengarajan

Abstract —Method of momeants solutions to pertinent coupled integral
equations have been investigated for arrays of coupling slots of the
centered-inclined and longitudinal-transverse types between a2 main
waveguide and crossed branch waveguides. It has been demonstrated
that, by including the TE,, mode coupling in the analysis, most of the
higher order mode effects can be accounted for in reduced height
waveguides, whereas in waveguides of standard height there may be a
small additional effect arising from the TE,; mode coupling.

I. INTRODUCTION

Recently, two types of resonant coupling slots commonly
employed in waveguide-fed planar slot arrays have been ana-
lyzed [1]-[3]. The scattering wave representations and equiva-
lent circuit models of slots are based on the TE,, mode scatter-
ing off the slot. In the main waveguide, higher order mode
coupling, especially through the TE,, mode, between adjacent
coupling slots can introduce a small but significant error in the
slot aperture electric field, which in turn gives rise to errors in
the TE,, mode scattering in the two waveguides. Such errors
can affect a high-performance slot array by degrading the side
lobe level or input match. Previously, the internal higher order
mode coupling between radiating slots has been considered in
the design of a slot array [4]. The objective of this paper is to
investigate the effect of internal higher order modes in the
feeding waveguide of a planar slot array. Both the centered-
inclined coupling slot and the longitudinal-transverse coupling
slot have been considered.

II. METHOD OF ANALYSIS

Fig. 1(a) shows a main waveguide and three crossed branch
waveguides on top. Centered coupling slots are cut in the
common broad walls between the main and branch waveguides.
_ Fig. 1(b) iltustrates a similar arrangement with longitudinal-
transverse coupling slots. It is assumed that all the branch
waveguide ends are terminated by matched loads and that they
do not have any radiating slots. The main waveguide is fed by a
matched TE,, mode source at one end and match terminated at
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Fig. 1. (a) Centered-inclined coupling slots feeding three branch wave-
guides. (b) Longitudinal-transverse coupling slots feeding three branch
waveguides.

the other end. By enforcing the continuity of the longitudinal
component of the magnetic field across six apertures of thick
walled slots, we obtain six coupled integral equations in terms of
the transverse component of the aperture E fields [1], [3],
[6]-[8]. The integral equations have been solved by the global
Galerkin type method of moments, resulting in matrix equations
expressed in the form
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Fig. 2. Phase error in the TE,; mode scattering by the central slot
caused by the neglect of higher order mode coupling: (a) centered-
inclined coupling slots; (b) longitudinal-transverse coupling slots.
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All the submatrices in (1) have been defined in the literature [1],
[3], [6]-18] except [G™], which is an N X N submatrix containing
internal coupling between slots r and s. A typical element in the
[G"*] submatrix is given by

e
G = —fleZ“t({,g ~0)sin| =-(£ + 1)] d¢

where H ;C"“ is the scattered field at the aperture region of the
rth slot caused by a magnetic current in the longitudinal direc-
tion of the sth slot aperture with a distribution given by
sin[gm /21({ +1)], and & and ¢ are the transverse and longitudi-
nal coordinates centered at the slot. Expressions for typical
elements of [G"*] are given in the Appendix.

In order to assess the effects of higher order mode coupling,
(1) was solved first, with only the TE,, mode contribution to the
coupling submatrices [G™*]. In a subsequent computation, the
TE,; mode contribution was also taken into account. Finally,
[G™] terms were computed very accurately by considering a
large number of waveguide modes. By comparing the results of
the first two cases with the third one, it is possible to obtain the
errors introduced in amplitude and phase of the aperture clec-
tric field and the scattered fields in the main and branch
waveguides owing to the neglect of higher order mode coupling.

A two-port scattering matrix for each slot in the main wave-
guide [1], [3] was expressed in the form of a chain matrix which
relates the incident and reflected waves at port 1 to the waves
entering and leaving port 2. By cascading chain matrices of
coupling slots and waveguide sections between slots, numerical
results were obtained for wave amplitudes at different locations
in the waveguides. These results were compared with the corre-
sponding data computed from the solution of (1). In the latter
computations, all higher order mode coupling contributions
were ignored. Excellent agreement between the two sets of data
was observed, thus validating the TE,, mode contribution to
[G™*]. Since the mathematical expressions and the computer
algorithm are in the same form for all modes, the above-men-
tioned validation process should hold good for all higher order
mode coupling terms also.

In the numerical results reported in Figs. 2 through 4, @ and b
are interior dimensions of main and branch waveguides, ¢ is the
wall thickness, and 2/, w, 8, and & are the slot length, width, tilt,
and offset respectively.

III. Resurts AND DiscUSSION

A. Coupling Between Half Guide Wavelength Spaced
Resonant Slots

In order to investigate the higher order mode coupling be-
tween resonant slots, all the slot lengths were chosen to be
resonant at the frequency of interest. The spacing between
adjacent slots was assumed to be a half wavelength in the guide.
Higher order mode coupling effects between resonant slots do
not depend on slot width or wall thickness. Therefore, these
parameters and the frequency were fixed. In addition, the mag-
nitudes of tilts or offsets of all coupling slots were kept the same
for convenience. Even though in many feed networks for slot
array applications adjacent coupling slots can have widely vary-
ing tilts or offsets, the qualitative behavior of higher order mode
coupling in such an array would be essentially similar to the
results presented in this paper.

The higher order mode coupling effect on the amplitude of
the aperture electric field or on the amplitude of the TE;, mode
scattered waves in the main and branch waveguides has been
found to be insignificant for all values of tilt angles or offscts.
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The central slot experiences a significant higher order mode
coupling effect from the two adjacent slots, about twice that
encountered by each of the remaining slots. The neglect of
higher order mode coupling causes nearly the same amount of
phase error in the aperture electric field and in the TE,; mode
scattered fields in the main waveguide and the branch wave-
guide. For small tilt angles, the phase error is of the order of 7°
to 10° whereas for large tilt angles it is significantly reduced, as
illustrated by Fig. 2(a) for inclined coupling slots. This is due to
the fact that when the tilt angle becomes large, the spacing
between edges of adjacent slots becomes greater, thereby caus-
ing greater attenuation for evanescent modes. The inclusion of
TE,, mode coupling in the computation reduces the phase error
by nearly a factor of 2 for a standard-height waveguide. In
reduced-height waveguides almost all the coupling is accounted
for by TE,, and TE,; modes. Ignoring all other higher order
mode coupling effects in a reduced-height waveguide causes an
insignificant amount of phase error, typically of the order of a
fraction of a degree.

Fig. 2(b) illustrates similar results for the central element of
an array of three longitudinal transverse coupling slots, It is
noted that the higher order mode coupling effects are significant
only for small offsets, where the modal amplitude of the TE,,
mode is greater. Here the definition of resonance based on
forward-scattering TE,, wave phase [3] has been assumed. For
quarter height guides, only small offsets have been chosen since
the coupling slots do not exhibit resonance for large offsets, as
discussed in [3]. Results similar to those presented here would
be obtained even if a resonance condition based on backscat-
tered wave phase were employed. The phase error is significant
for small offsets only where the modal amplitude of the TE,,
mode is significant. TE ;, and TE,, modes account for almost all
the coupling effects in reduced-height waveguides. Even for a
standard-height waveguide the neglect of all other higher order
mode coupling terms does not introduce any serious error.

B. Coupling Between Off-Resonant Slots

Resonant slots with half guide wavelength spacing at the
center frequency, f,, were considered. The normalized fre-
quency, f/f,, was varied between 0.95 and 1.05. Inclined cou-
pling slots with a tilt of 15° or longitudinal transverse coupling
slots with an offset of 2.54 mm were considered. Fig. 3 shows the
phase error plots, which are similar for both types of coupling
slots. Ignoring the coupling from all modes except TE, intro-
duces a phase error of as much as 9° at the resonant frecuency
in a standard height waveguide. At a frequency 5% away from
resonance the phase error reduces to a value between 2° and 4°.
For a quarter height guide these errors are in the range of 4° to
7°. By including the TE,; mode coupling in the computation the
phase error is reduced to a range of 1° to 3.5° in the standard
height waveguide and to an insignificant amount in the quarter
height waveguide. Fig. 4 exhibits the amplitude error in percent-
age experienced by the TE,;, mode scattered wave in the main
or branch line or the aperture electric field of the central slot
caused by the neglect of higher order mode coupling. At the
resonant frequency, the amplitude error is insignificant whereas
at frequencies about +5% away the error becomes as high as
8.5% for a standard-height waveguide and 2.5% for a quarter
height waveguide. The TE,;, mode accounts for a substantial
amount in a standard-height guide whereas it accounts for
almost all the higher order mode coupling effect in reduced-
height guides.
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Fig. 3. Phase error caused by the neglect of higher order mode cou-

pling between off-resonant coupling slots: (a) centered-inclined coupling
slots; (b) longitudinal-transverse coupling slots.
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Fig. 4. Amplitude error in percentage in the TE,, mode scattering by
the central slot caused by the neglect of higher order mode coupling:
(a) centered-inclined coupling slots; (b) longitudinal-transverse coupling
slots.

C. TE,; Mode Effects

In reduced-height waveguides, the cutoff frequency of the
TE(; mode is much higher than that of the TE,, mode. There-
fore, the attenuation of the TE;; mode relative to that of the
TE,, mode is substantial. This explains why TE,, is the only
significant higher order mode that contributes to internal cou-
pling in reduced-height guides. However, in standard-height
guides the cutoff frequency of the TE; mode is close to that of
the TE,, mode; hence the coupling effect of the former may
become significant. For example, in Fig. 2(a) when the tilt is 10°,
the phase error drops from 4° to 1° if the TE; mode coupling is
included. In Fig. 2(b), for an offset of 1.27 mm, the addition of
TE, mode coupling causes the phase error to drop from 3.9° to
0.7°. Similar results were found for other values of offsets or tilts
in standard-height guides. Standard-height waveguides in cer-
tain frequency bands have b =a /2 where the TE and TE,,
modes have the same cutoff frequencies. In such cases it is
recommended that the TE,; mode coupling be taken into ac-
count in addition to that of TE,; and TE,, modes.
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IV. ConNcLusioNs

Higher order mode coupling effects between coupling slots
have been found to be significant only for small offsets or tilts.
The TE,, mode accounts for almost all the higher order mode
coupling effect in reduced-height guides. In a standard-height
guide, the higher order mode coupling effects are slightly greater
and are accounted for by TE,, and TE;, modes.

APPENDIX

A. Coupling Matrix Elements for Centered Inclined Coupling Slots

1
G =
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where D is the spacing between slots r and s.
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Here a and b denote the waveguide interior cross-sectional
dimensions; 2/, w, and 6 are the slot length, width, and tilt
respectively; &k is the wavenumber; and vy, is the propagation
constant for the mode mn. €2, =1if m+0 and n # 0, and it is
1/2if m=0, n#0or n=0, m#0. The integrals I, I,, I;, and
1, are determined analytically.

B. Coupling Matrix Elements for Longitudinal Transverse
Coupling Slots
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where sgn=11if r > 5, and sgn =(—1)?*9 if r <s; and x,, and
xg, are the x values of the centers of slots » and s respectively.
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A Uniform Asymptotic Expansion for the Green’s
Functions Used in Microstrip Calculations

John M. Dunn

Abstract —A wniform asymplotic approximation is developed in the
limit of small substrate thickness for the Green’s functions used in
microstrip-type problems. The approximation is valid for a single-layer
substrate. The expansions agree with near and far-field results previ-
ously published in the literature. Comparison of the approximation is
made with numerical evaluations of the exact integral solution available
for the problem.

1. INTRODUCTION

There is currently a great deal of interest in the numerical
computation of microstrip circuit parameters. One of the most
popular approaches has been the use of moment method tech-
niques. For example, Gardiol and Mosig [1], [2] have developed
algorithms for a complete moment method solution. (See also
Mosig [3].) These methods invariably require a knowledge of
various Green’s functions in order for the integral equation to
be properly formulated. Unfortunately, the Green’s functions
are of the Sommerfeld integral type and are not known in terms
of simple functions. The integrals that must be evaluated are
slow to converge and exhibit nearly singular behavior.

Various researchers have developed approximations to these
integrals in the limit of high and low frequencies and for near
and far fields. In this paper, I will develop an approximation
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which is uniformly valid for all distances from the source in the
limit where the substrate region is thin, which is typically the
case of interest for microstrip problems. The advantages of
having a uniform asymptotic expansion available are that it can
lead to much quicker evaluation of the matrix elements in the
discrete integral equation, and it gives the researcher a much
better feel for how the fields behave. In addition, it can serve as
the starting point for more accurate approximations if such
approximations are needed. There are a number of asymptotic
expansions available in the literature for Green’s functions of
this type. Unfortunately, none of them is valid for all distances
from the source. Approximations exist for the quasi-static re-
gion: |kypl < 1, where p is the radial distance from the dipole
source and k, is the free-space wavenumber [3]. Sophisticated
approximations exist for |kp| > 1, where k is the wavenumber of
the substrate [4]. The main result presented in this paper is to
show how such expressions can be combined to make a uniform
approximation for all distances, p, if the substrate is electrically
thin. The method is based on work carried out by Wu and King
[6], [7]; their work examines the two-layer semi-infinite problem.
In addition, King [8] has carried out an analysis of the microstrip
case for thin substrates when the distance from the source is
much greater than a substrate thickness.

The approximations are derived in the next section. The
results are compared with numerical evaluations of the exact
Green’s functions in the third part of the paper.

II. DeRrRIVATION OF THE FORMULAS

In this section, the uniform asymptotic expansions are de-
rived. The expansions are developed for the scalar and vector
potentials rather than for the electromagnetic fields. This is
done because they have slightly simpler integrals to evaluate,
and because it is useful to formulate moment method numerical
equations in terms of potentials. It is possible to work directly
from the fields if one wishes.

We use the formulas given in Mosig [3] as the basis of the
expansions. It is shown that the electric and magnetic fields can
be written as

E=—-VV—jowd

B=vxAd )

where E and B are the clectric field and magnetic flux density
vectors, A is the vector potential, and V' is the scalar potential,
defined in the usual way. The equations are written in the
frequency domain with an (exp(jwt)) time dependence as-
sumed. MKS units are used. A unit strength time-harmonic
electric dipole is placed on the interface between the air and
substrate regions and is oriented in the x direction (see Fig. 1).
The coordinate system is chosen so that the z axis is vertical.
The interface between the two media is on the z = 0 plane, and
the perfectly conducting ground plane is on the z = — & plane.
The substrate thickness is, therefore, 4. Quantities which refer
to the upper region have a subscript 0. It is shown in [3] that the
fields from the dipole can be completely determined if the
Green’s functions are known: G:4(p,0) and G,(p,0). GL(p,0)
is the xx component of the dyadic Green’s function for the
vector potential A arising from a unit electric dipole in the x
direction at the origin. G, is the Green’s function for the scalar
potential V. To get the actual potentials for a given charge and
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